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 Different types of randomized algorithms . 

 

 Randomized Quick sort (Las Vegas). 

 

 Randomized Min-cut (Monte Carlo) 
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 performance;  Randomized algorithms run faster 
than the best-known deterministic algorithms. 

 Simplicity; Many randomized algorithms are 
simpler to describe and implement than 
deterministic algorithms of comparable 
performance. 

 Foiling an adversary; While the adversary may be 
able to construct an input that foils a 
deterministic algorithms, it is difficult to devise a 
single input that is defeat a randomly chosen 
algorithm. 
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1. Las Vegas algorithm 
◦ A  randomized algorithm that always return the 

correct result. 

◦ The running time might change between 
executions. 

2. Monte Carlo algorithm 
◦ A randomized algorithm that might output an 

incorrect result. 

◦ the probability of error can be diminished by 
repeating the execution of the algorithm. 
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 Sorting Algorithms: The problem is 
concerned with sorting an array of n elements 
into ascending order. 

 Quick Sort (deterministic): 
1. picks an element from the array (the first element) 

2. partitions the remaining elements into those 
greater than and those less than this pivot. 

3. Then recursively sorts the partitions. 
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The adversary can provide a reverse-sorted array as input 

(worst-case).  

The array will always be split into two unbalanced sets, a 

set of one element and a set consisting of the remainder. 

T(n)=T(n-1)+n  

T(n)=n(n-1)=O(n2) 
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1. Choose an element Y uniformly at random 
from S. 

2. Determine the set S1 of elements smaller 
than Y and the set S2 of elements larger 
than Y . 

3. Recursively sort S1 and S2. 
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 We are interested in the expected number of 
comparisons in an execution of this 
algorithm. 

 

 All the comparisons are performed in Step 2, 
in which we compare a randomly chosen 
partitioning element to the remaining 
elements. 
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 For 1 < i < n, let S(i) denote the element of 
rank i (the ith smallest element) in the set S. 

 Define the random variable Xij to assume the 
value 1 if S(i) and S(j) are compared in an 
execution, and the value 0 otherwise. 

 

 Two different elements are at most compared 
once. 
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Total number of comparisons is 

We are interested in the expected number of 
comparisons, which is clearly 
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 Let pij denote the probability that S(i) and S(j) 
are compared in an execution.  

 Xij is a Bernoulli random variable that only 
assumes the values 0 and 1. 

 

 

 Thus, the expected number of comparisons is 
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 There is a comparison between S(i) and S(j) if 
and only if one of these elements is an 
ancestor of the other. 
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 This happens only if S(i) or S(j) was selected 
first among the elements that are larger than 
S(i) and smaller than S(j). 

 S(i) and S(j) goes into different partitions and 
are never compared if and only if an element 
in between them is picked first by the random 
algorithm. 

 The  probability of picking S(i) or S(j) first in 
the set {S(i), S(i + 1), ..., S(j)} is 2/(j − i + 1). 

16 



 Accordingly, The expected number of 
comparisons is 

 

 

 Let k = j − i + 1; thus the expected number 
of comparisons: 
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 Hn is the nth Harmonic number, and is roughly 
ln n. 

 the expected running time is O(n log n). 

 The expected running time depends only on 
random choices made by the algorithm and 
not on any assumptions about the 
distribution of the input. 

 Behavior can vary even on the same input. 
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Randomized Min-cut 
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A cut in G is a partition of the vertices of V into two 

sets S and V \ S, where the edges of the cut are 

(S, V \ S) = {uv| u∈S, v∈V\S, and uv∈E}, 

where S ≠∅ ; and V \ S ≠∅ ; We will refer to the 

number of edges in the cut (S, V \ S) as the size of 

the cut. 
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 Computing the minimum cut, that is, the cut 
in the graph with minimum cardinality. 
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if X and Y are independent, then 
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Edge contraction: We take an edge  e = xy ,and merge the 

two vertices into a single vertex. 

The new graph is denoted by G/xy. We remove self loops. 

The resulting graph is no longer a regular graph, is a 

multi-graph. 

We represent a multi-graph, as a regular graph with 

multiplicities on the edges. 
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 If an edge is in the cut, and it has weight w 
we add w to the weight of the cut. 

 Each vertex in the contracted graph, 
corresponds to a connected component in the 
original graph. 

 The size of the minimum cut in G/xy is at 
least as large as the minimum cut in G. Since 
any cut in G/xy has a corresponding cut of 
the same cardinality in G. 
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The idea of our algorithm is to repeatedly perform 

contraction, which is beneficial since it shrinks the 

graph. 

We contract the graph into a single edge. 

Indeed, the resulting cut is not surely the 

minimum cut. 
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The MinCut algorithm was developed by David Karger during his PhD 
thesis in Stanford. 
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 The edge contraction operation can be 
implemented in O(n) time. 

 

 MinCut runs in O(n2) time. 

 

 The algorithm always outputs a cut, and the 
cut is not smaller than the minimum cut. 
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 Let e1, . . . , en−2 be a sequence of edges in G, 
such that none of them is in the minimum 
cut, and such that G0 = G/ {e1, . . . , en−2} is a 
single multi-edge. Then, this multi-edge 
corresponds to the minimum cut in G. 
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 If a graph G has a minimum cut of size k, and 
it has n vertices, then |E(G)| ≥ kn/2 

 If we pick in random an edge e from a graph 
G, then with probability at most 2/n it 
belongs to the minimum cut. 

 

 Proof 
◦ There are at least nk/2 edges in the graph and 

exactly k edges in the minimum cut 
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 MinCut outputs the minimum cut if the 
events η0, . . . , ηn−3 all happen 
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 Amplification is the process of running an 
experiment again and again till the things we 
want, happens with good probability. 

 

 Let MinCutRep be the algorithm that runs 
MinCut  n(n−1) times and return the 
minimum cut computed in all those 
independent executions. 
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 The probability that MinCutRep fails to return the 
minimum cut is < 0.14. 

 

 Proof 
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 One can compute the minimum cut in O(n4) time with 

constant probability to get a correct result. 

 

  In O(n4 log n) time the minimum cut is returned with 

high probability. 
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 The sorting algorithm always terminates with 
the correct solution, but its running time 
varies from an expected running time of 
O(nlog n) to a worst-case running time of 
O(n2). 

 The  min-cut algorithm sometimes generates 
an incorrect solution. The failure probability 
can be made arbitrarily small by executing 
the algorithm several times with independent 
random choices each time. 

39 



 

 A Las Vegas algorithm is efficient if on any 
input its expected running time is bounded 
by a polynomial function of the input size. 

 

 a Monte Carlo algorithm is efficient if on any 
input its worst-case running time is bounded 
by a polynomial function of the input size. 
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