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 Different types of randomized algorithms . 

 

 Randomized Quick sort (Las Vegas). 

 

 Randomized Min-cut (Monte Carlo) 
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 performance;  Randomized algorithms run faster 
than the best-known deterministic algorithms. 

 Simplicity; Many randomized algorithms are 
simpler to describe and implement than 
deterministic algorithms of comparable 
performance. 

 Foiling an adversary; While the adversary may be 
able to construct an input that foils a 
deterministic algorithms, it is difficult to devise a 
single input that is defeat a randomly chosen 
algorithm. 
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1. Las Vegas algorithm 
◦ A  randomized algorithm that always return the 

correct result. 

◦ The running time might change between 
executions. 

2. Monte Carlo algorithm 
◦ A randomized algorithm that might output an 

incorrect result. 

◦ the probability of error can be diminished by 
repeating the execution of the algorithm. 
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 Sorting Algorithms: The problem is 
concerned with sorting an array of n elements 
into ascending order. 

 Quick Sort (deterministic): 
1. picks an element from the array (the first element) 

2. partitions the remaining elements into those 
greater than and those less than this pivot. 

3. Then recursively sorts the partitions. 

5 



6 



The adversary can provide a reverse-sorted array as input 

(worst-case).  

The array will always be split into two unbalanced sets, a 

set of one element and a set consisting of the remainder. 

T(n)=T(n-1)+n  

T(n)=n(n-1)=O(n2) 
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1. Choose an element Y uniformly at random 
from S. 

2. Determine the set S1 of elements smaller 
than Y and the set S2 of elements larger 
than Y . 

3. Recursively sort S1 and S2. 
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 We are interested in the expected number of 
comparisons in an execution of this 
algorithm. 

 

 All the comparisons are performed in Step 2, 
in which we compare a randomly chosen 
partitioning element to the remaining 
elements. 
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 For 1 < i < n, let S(i) denote the element of 
rank i (the ith smallest element) in the set S. 

 Define the random variable Xij to assume the 
value 1 if S(i) and S(j) are compared in an 
execution, and the value 0 otherwise. 

 

 Two different elements are at most compared 
once. 
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Total number of comparisons is 

We are interested in the expected number of 
comparisons, which is clearly 
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 Let pij denote the probability that S(i) and S(j) 
are compared in an execution.  

 Xij is a Bernoulli random variable that only 
assumes the values 0 and 1. 

 

 

 Thus, the expected number of comparisons is 
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 There is a comparison between S(i) and S(j) if 
and only if one of these elements is an 
ancestor of the other. 
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 This happens only if S(i) or S(j) was selected 
first among the elements that are larger than 
S(i) and smaller than S(j). 

 S(i) and S(j) goes into different partitions and 
are never compared if and only if an element 
in between them is picked first by the random 
algorithm. 

 The  probability of picking S(i) or S(j) first in 
the set {S(i), S(i + 1), ..., S(j)} is 2/(j − i + 1). 
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 Accordingly, The expected number of 
comparisons is 

 

 

 Let k = j − i + 1; thus the expected number 
of comparisons: 
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 Hn is the nth Harmonic number, and is roughly 
ln n. 

 the expected running time is O(n log n). 

 The expected running time depends only on 
random choices made by the algorithm and 
not on any assumptions about the 
distribution of the input. 

 Behavior can vary even on the same input. 
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Randomized Min-cut 
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A cut in G is a partition of the vertices of V into two 

sets S and V \ S, where the edges of the cut are 

(S, V \ S) = {uv| u∈S, v∈V\S, and uv∈E}, 

where S ≠∅ ; and V \ S ≠∅ ; We will refer to the 

number of edges in the cut (S, V \ S) as the size of 

the cut. 
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 Computing the minimum cut, that is, the cut 
in the graph with minimum cardinality. 
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if X and Y are independent, then 
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Edge contraction: We take an edge  e = xy ,and merge the 

two vertices into a single vertex. 

The new graph is denoted by G/xy. We remove self loops. 

The resulting graph is no longer a regular graph, is a 

multi-graph. 

We represent a multi-graph, as a regular graph with 

multiplicities on the edges. 
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 If an edge is in the cut, and it has weight w 
we add w to the weight of the cut. 

 Each vertex in the contracted graph, 
corresponds to a connected component in the 
original graph. 

 The size of the minimum cut in G/xy is at 
least as large as the minimum cut in G. Since 
any cut in G/xy has a corresponding cut of 
the same cardinality in G. 
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The idea of our algorithm is to repeatedly perform 

contraction, which is beneficial since it shrinks the 

graph. 

We contract the graph into a single edge. 

Indeed, the resulting cut is not surely the 

minimum cut. 
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The MinCut algorithm was developed by David Karger during his PhD 
thesis in Stanford. 
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 The edge contraction operation can be 
implemented in O(n) time. 

 

 MinCut runs in O(n2) time. 

 

 The algorithm always outputs a cut, and the 
cut is not smaller than the minimum cut. 
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 Let e1, . . . , en−2 be a sequence of edges in G, 
such that none of them is in the minimum 
cut, and such that G0 = G/ {e1, . . . , en−2} is a 
single multi-edge. Then, this multi-edge 
corresponds to the minimum cut in G. 
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 If a graph G has a minimum cut of size k, and 
it has n vertices, then |E(G)| ≥ kn/2 

 If we pick in random an edge e from a graph 
G, then with probability at most 2/n it 
belongs to the minimum cut. 

 

 Proof 
◦ There are at least nk/2 edges in the graph and 

exactly k edges in the minimum cut 
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 MinCut outputs the minimum cut if the 
events η0, . . . , ηn−3 all happen 
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 Amplification is the process of running an 
experiment again and again till the things we 
want, happens with good probability. 

 

 Let MinCutRep be the algorithm that runs 
MinCut  n(n−1) times and return the 
minimum cut computed in all those 
independent executions. 
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 The probability that MinCutRep fails to return the 
minimum cut is < 0.14. 

 

 Proof 
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 One can compute the minimum cut in O(n4) time with 

constant probability to get a correct result. 

 

  In O(n4 log n) time the minimum cut is returned with 

high probability. 
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 The sorting algorithm always terminates with 
the correct solution, but its running time 
varies from an expected running time of 
O(nlog n) to a worst-case running time of 
O(n2). 

 The  min-cut algorithm sometimes generates 
an incorrect solution. The failure probability 
can be made arbitrarily small by executing 
the algorithm several times with independent 
random choices each time. 
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 A Las Vegas algorithm is efficient if on any 
input its expected running time is bounded 
by a polynomial function of the input size. 

 

 a Monte Carlo algorithm is efficient if on any 
input its worst-case running time is bounded 
by a polynomial function of the input size. 
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