
RANDOMIZED ALGORITHMS

Hamed Vahdat-Nejad

1

N-QUEENS

 Problem: position n queens on an n × n

chessboard so that no two queens threaten each

other.

 Let n=4

 There are 4 × 4 × 4 × 4 = 256 candidate solutions.

 We can create the candidate solutions by

constructing a tree in which the column choices

for the first queen (the queen in row 1) are stored

in level-1 nodes in the tree, the column choices

for the second queen (the queen in row 2) are

stored in level-2 nodes, and so on.
2

 The tree is called a state space tree.

 The entire tree has 256 leaves.

 A path from the root to a leaf is a candidate

solution .

3

4

mk:@MSITStore:C:/hamed/Computrer Science/Jones And Bartlett Publishers - Foundations Of Algorithms Using Cpp Pseudocode 3ed.chm::/5897final/images/fig5-2_0.jpg
mk:@MSITStore:C:/hamed/Computrer Science/Jones And Bartlett Publishers - Foundations Of Algorithms Using Cpp Pseudocode 3ed.chm::/5897final/images/fig5-2_0.jpg
mk:@MSITStore:C:/hamed/Computrer Science/Jones And Bartlett Publishers - Foundations Of Algorithms Using Cpp Pseudocode 3ed.chm::/5897final/images/fig5-2_0.jpg
mk:@MSITStore:C:/hamed/Computrer Science/Jones And Bartlett Publishers - Foundations Of Algorithms Using Cpp Pseudocode 3ed.chm::/5897final/images/fig5-2_0.jpg

BACKTRACKING

 Backtracking is the procedure whereby, after

determining that a node can lead to nothing but

dead ends, we go back ("backtrack") to the node's

parent and proceed with the search on the next

child.

 We call a node nonpromising if when visiting

the node we determine that it cannot possibly

lead to a solution.

 Otherwise, we call it promising.

 This is called pruning the state space tree

5

THE GENERAL ALGORITHM OF

BACKTRACKING

void checknode (node v)

{

node u;

if (promising(v))

if (there is a solution at v) write the solution;

else

for (each child u of v)

checknode(u);

}

6

7

 The backtracking algorithm checks 27 nodes

before finding a solution.

 A depth-first search of the state space tree checks

155 nodes before finding that same solution.

8

ANALYSIS

 Given two instances with the same value of n,

one algorithm may require that very few nodes be

checked, whereas the other algorithm requires

that the entire state space tree be checked.

 If we had an estimate of how efficiently a given

backtracking algorithm would process a

particular instance, we could decide whether

using the algorithm on that instance was

reasonable.

 We can obtain such an estimate using a Monte

Carlo algorithm.
9

 Monte Carlo algorithms are probabilistic

algorithms.

 By a probabilistic algorithm, we mean that

the next instruction executed is sometimes

determined at random according to some

probability distribution.

 Unless otherwise stated, we assume that

probability distribution is the uniform

distribution.

 By a deterministic algorithm, we mean one in

which this cannot happen.
10

 A Monte Carlo algorithm estimates the

expected value of a random variable, defined on a

sample space.

 There is no guarantee that the estimate is close

to the true expected value.

 We can use a Monte Carlo algorithm to estimate

the efficiency of a backtracking algorithm for a

particular instance.

 We estimate the total number of nodes that

would be checked to find all solutions.

 It is an estimate of the number of nodes in the

pruned state space tree.
11

 The following conditions must be satisfied by the

algorithm in order for the technique to apply:

1. The same promising function must be used on all

nodes at the same level in the state space tree.

2. Nodes at the same level in the state space tree must

have the same number of children.

 The Monte Carlo technique requires that we

randomly generate a promising child of a node

according to the uniform distribution.

 We mean that a random process is used to

generate the promising child.

12

MONTE CARLO TECHNIQUE

 Let m0 be the number of promising children of the
root.

 Randomly generate a promising node at level 1. Let
m1 be the number of promising children of this node.

 Randomly generate a promising child of the node
obtained in the previous step. Let m2 be the number
of promising children of this node.

 . . .

 Randomly generate a promising child of the node
obtained in the previous step. Let mi be the number of
promising children of this node.

 . . .

 This process continues until no promising children
are found.

13

 mi is an estimate of the average number of

promising children of nodes at level i.

 ti = total number of children of a node at level i.

 an estimate of the total number of nodes checked

by the backtracking algorithm to find all

solutions is given by

 In the algorithm, a variable mprod is used to

represent the product m0m1 … mi-1 at each level.

14

MONTE CARLO ESTIMATE

 Problem: Estimate the efficiency of a

backtracking algorithm using a Monte Carlo

algorithm.

 Inputs: an instance of the problem that the

backtracking algorithm solves.

 Outputs: an estimate of the number of nodes in

the pruned state space tree produced by the

algorithm, which is the number of the nodes the

algorithm will check to find all solutions to the

instance.

15

THE ALGORITHM

int estimate ()

{ node v;

int m, mprod, t, numnodes;

v = root of state space tree;

numnodes = 1; m = 1; mprod = 1;

while (m != 0)

{ t = number of children of v;

mprod = mprod * m;

numnodes = numnodes + mprod * t;

m = number of promising children of v;

if (m != 0)

v = randomly selected promising child of v;

}

return numnodes;

}
16

THE MONTE CARLO FOR N-QUEEN

PROBLEM

int estimate_n_queens (int n)

{ index i, j, col [1 . . n]; int m, mprod, numnodes;

set_of_index prom_children;

i = 0; numnodes = 1; m = 1; mprod = 1;

while (m != 0 && i != n)

{ mprod = mprod * m;

numnodes = numnodes + mprod * n;

i++;

m = 0;

prom_children = ⊘ ; // Initialize set of promising children

for (j = 1; j <= n; j++)

{ col[i] = j;

if (promising (i))

{ m++;

prom_children = prom_children ∪ {j};

}

}

if (m != 0)

{ j = random selection from prom_children;

col [i] = j;

}

}return numnodes;

}

17

 When a Monte Carlo algorithm is used, the estimate
should be run more than once.

 The average of the results should be used as the
actual estimate.

 Around 20 trials are ordinarily sufficient.

 Although the probability of obtaining a good estimate
is high when the Monte Carlo algorithm is run many
times, there is never a guarantee that it is a good
estimate.

 The estimate produced by any one application of the
Monte Carlo technique is for one particular instance.

 Given two instances with the same value of n, one
may require that very few nodes be checked whereas
the other requires that the entire state space tree be
checked. 18

KNAPSACK PROBLEM

 We have a set of items, each of which has a

weight and a profit.

 A thief plans to carry off stolen items in a

knapsack, and the knapsack will break if the

total weight of the items placed in it exceeds

some positive integer W.

 The thief's objective is to determine a set of items

that maximizes the total profit.

19

 We can solve this problem using a state space

tree.

 We go to the left from the root to include the first

item, and we go to the right to exclude it.

Similarly, we go to the left from a node at level 1

to include the second item, and we go to the right

to exclude it, and so on.

 Each path from the root to a leaf is a candidate

solution.

20

 if weight is the sum of the weights of the items
that have been included up to some node, the
node is nonpromising if

 A non obvious non-promising measure

 We first order the items in non-increasing order
according to the values of pi/wi, where wi and pi are
the weight and profit, respectively, of the ith item.

 Let profit be the sum of the profits of the items
included up to the node.

 Weight is the sum of the weights of those items.

 We initialize variables bound and totweight to
profit and weight, respectively.

21

 Next we greedily grab items, adding their profits

to bound and their weights to totweight, until we

get to an item that if grabbedwould bring

totweight above W.

 We grab the fraction of that item allowed by the

remaining weight, and we add the value of that

fraction to bound.

 bound is still an upper bound on the profit we

could achieve by expanding beyond the node.

22

 Suppose the node is at level i, and the node at

level k is the one that would bring the sum of the

weights above W.

23

 If maxprofit is the value of the profit in the best

solution found so far, then a node at level i is

nonpromising if

24

void knapsack (index i, int profit, int weight)

{ if (weight <= W&& profit > maxprofit)

{ maxprofit = profit;

numbest = i;

bestset = include;

}

if (promising(i))

{

include [i + 1] = "yes";

knapsack(i + 1, profit + p[i + 1], weight + w[i + 1]);

include [i + 1] = "no"; // Do not include

knapsack (i + 1, profit, weight);

}

}

bool promising (index i)

{ index j, k; int totweight; float bound;

if (weight >= W) return false;

else

{ j = i + 1;

bound = profit;

totweight = weight;

while (j <= n && totweight + w[j] < = W)

{ totweight = totweight + w[j];

bound = bound + p[j];

j++;

} k = j;

if (k <=n) bound = bound + (W - totweight) * p[k]/w[k];

return bound > maxprofit;

}

}

25

 Monte Carlo technique applies in this problem, it

can be used to estimate the efficiency of the

algorithm for a particular instance.

 Worst-case number of entries that is computed by

the dynamic programming algorithm for the

Knapsack problem is in O (minimum (2n, nW)).

 In the worst case, the backtracking algorithm

checks Θ (2n) nodes.

 It may appear that the dynamic programming

algorithm is superior.

26

 It is difficult to analyze theoretically the relative

efficiencies of the two algorithms.

 The algorithms can be compared by running

them on many sample instances and seeing

which algorithm usually performs better.

 Horowitz and Sahni (1978) did this and found

that the backtracking algorithm is usually more

efficient than the dynamic programming

algorithm.

27

THE PROBABILISTIC METHOD

28

 The main proponent of the probabilistic method,

was Paul Erd˝os.

 The basic technique is based on two basic

observations:

1. If E[X] = μ, then there exists a value x of X, such

that x ≥ E[X].

2. If the probability of event E is larger than zero,

then E exists and it is not empty.

 The surprising thing is that despite the

elementary nature of those two observations,

they lead to a powerful technique that leads to

numerous nice and strong results. 29

EXAMPLE

 Theorem: For any undirected graph G(V,E) with

n vertices and m edges, there is a partition of the

vertex set V into two sets A and B such that

 Proof: Consider the following experiment:

randomly assign each vertex to A or B,

independently and equal probability.

30

 For an edge e = uv, the probability that one

endpoint is in A, and the other in B is ½.

 let Xe be the indicator variable with value 1 if

this happens.

 Clearly,

 If E[X] = μ, then there exists a value x of X, such that

x≥E[X].

 Thus, there must be a partition of V that satisfies

the theorem.
31

EXAMPLE

 Definition: For a vector v = (v1, . . . , vn) ∈IRn,

 Theorem: Let A be an n × n binary matrix (i.e.,

each entry is either 0 or 1), then there always
exists a vector b ∈{−1, +1}n such that

32

PROOF

 Let v = (v1, . . . , vn) be a row of A.

 Choose a random b = (b1, . . . , bn) ∈{−1, +1}n.

 Let i1, . . . , im be the indices such that vij = 1.

 Clearly,

 Let Xj = 1 if bij = +1, for j = 1, . . . ,m.

 We have

33

 Then

34

CHERNOFF INEQUALITY

 Let X1, . . . ,Xn be n independent random

variables, such that

Pr[Xi = 1] = Pr[Xi = −1] =0.5

, for i = 1, . . . , n.

 Let

 Then, for any ∆> 0, we have

35

 the probability that any entry in Ab exceeds

is smaller than 2/n7.

 Thus, with probability at least 1 − 2/n7, all the

entries of Ab have value smaller than

36

BINARY PLANAR PARTITIONS

37

PROBLEM

 Input: A set S = {s1, s2, ..., sn} of non-intersecting

line segments in the plane.

 Output: A binary planar partition such that

every region in the partition contains at most one

line segment (or a portion of one line segment).

38

 A binary planar partition consists of a binary

tree. Every internal node of the tree has two

children.

 Associated with each node v of the tree is a

region r(v) of the plane.

 Associated with each internal node v of the tree

is a line l(v) that intersects r(v).

 The region corresponding to the root is the entire

plane.

 The region r(v) is partitioned by l(v) into two

regions r1(v) and r2(v), which are the regions

associated with the two children of v.
39

40

 Any region r of the partition is bounded by the

partition lines on the path from the root to the

node corresponding to r in the tree.

 The storage requirement of a particular binary

planar partition is the number of nodes in the

associated tree.

 We want this tree to have as few nodes as

possible.

41

 The best case is the one in which we are able to

partition the n line segments without generating

other new line segments (which are created when

the original line segments are broken).

 In this case, we will need (n − 1) lines to partition

the n line segments.

 Therefore, the total number of nodes in the

binary planar partition tree (of n leaves and

(n−1) interior nodes) is (2n−1).

 However, there is no guarantee that there is

always a partition of size O(n).
42

 We will prove using a randomized algorithm that

there always exists a binary planar partition of

size O(n log n).

 For a line segment s, let l(s) denote the line

obtained by extending s both sides to infinity.

 For the set S = {s1, s2, ..., sn} of line segments, a

simple and natural class of partitions is the set of

autopartitions, which are formed by only using

lines from the set {l(s1), l(s2), ..., l(sn)} in

constructing the partition.

43

THE RANDOMIZED ALGORITHM

 Input: A set S = {s1, s2, ..., sn} of non-intersecting

line segments.

 Output: A binary autopartition P of S.

1. Pick a permutation of of {1, 2, ..., n} uniformly

at random from n! possible permutations.

2. While a region contains more than one segment,

cut it with l(si) where i is the first in the

ordering such that si cuts that region.

44

 Theorem: The expected size of the autopartition

produced by RandAuto is O(n log n).

45

ANY QUESTION?
46

