
Dr Hamed Vahdat-Nejad

1

 Different types of randomized algorithms .

 Randomized Quick sort (Las Vegas).

 Randomized Min-cut (Monte Carlo)

2

 performance; Randomized algorithms run faster
than the best-known deterministic algorithms.

 Simplicity; Many randomized algorithms are
simpler to describe and implement than
deterministic algorithms of comparable
performance.

 Foiling an adversary; While the adversary may be
able to construct an input that foils a
deterministic algorithms, it is difficult to devise a
single input that is defeat a randomly chosen
algorithm.

3

1. Las Vegas algorithm
◦ A randomized algorithm that always return the

correct result.

◦ The running time might change between
executions.

2. Monte Carlo algorithm
◦ A randomized algorithm that might output an

incorrect result.

◦ the probability of error can be diminished by
repeating the execution of the algorithm.

4

 Sorting Algorithms: The problem is
concerned with sorting an array of n elements
into ascending order.

 Quick Sort (deterministic):
1. picks an element from the array (the first element)

2. partitions the remaining elements into those
greater than and those less than this pivot.

3. Then recursively sorts the partitions.

5

6

The adversary can provide a reverse-sorted array as input

(worst-case).

The array will always be split into two unbalanced sets, a

set of one element and a set consisting of the remainder.

T(n)=T(n-1)+n

T(n)=n(n-1)=O(n2)

7

1. Choose an element Y uniformly at random
from S.

2. Determine the set S1 of elements smaller
than Y and the set S2 of elements larger
than Y .

3. Recursively sort S1 and S2.

8

9

 We are interested in the expected number of
comparisons in an execution of this
algorithm.

 All the comparisons are performed in Step 2,
in which we compare a randomly chosen
partitioning element to the remaining
elements.

10

 For 1 < i < n, let S(i) denote the element of
rank i (the ith smallest element) in the set S.

 Define the random variable Xij to assume the
value 1 if S(i) and S(j) are compared in an
execution, and the value 0 otherwise.

 Two different elements are at most compared
once.

11

12

Total number of comparisons is

We are interested in the expected number of
comparisons, which is clearly

13

 Let pij denote the probability that S(i) and S(j)
are compared in an execution.

 Xij is a Bernoulli random variable that only
assumes the values 0 and 1.

 Thus, the expected number of comparisons is

14

 There is a comparison between S(i) and S(j) if
and only if one of these elements is an
ancestor of the other.

15

 This happens only if S(i) or S(j) was selected
first among the elements that are larger than
S(i) and smaller than S(j).

 S(i) and S(j) goes into different partitions and
are never compared if and only if an element
in between them is picked first by the random
algorithm.

 The probability of picking S(i) or S(j) first in
the set {S(i), S(i + 1), ..., S(j)} is 2/(j − i + 1).

16

 Accordingly, The expected number of
comparisons is

 Let k = j − i + 1; thus the expected number
of comparisons:

17

 Hn is the nth Harmonic number, and is roughly
ln n.

 the expected running time is O(n log n).

 The expected running time depends only on
random choices made by the algorithm and
not on any assumptions about the
distribution of the input.

 Behavior can vary even on the same input.

18

Randomized Min-cut

19

A cut in G is a partition of the vertices of V into two

sets S and V \ S, where the edges of the cut are

(S, V \ S) = {uv| u∈S, v∈V\S, and uv∈E},

where S ≠∅ ; and V \ S ≠∅ ; We will refer to the

number of edges in the cut (S, V \ S) as the size of

the cut.

20

21

 Computing the minimum cut, that is, the cut
in the graph with minimum cardinality.

22

if X and Y are independent, then

23

24

Edge contraction: We take an edge e = xy ,and merge the

two vertices into a single vertex.

The new graph is denoted by G/xy. We remove self loops.

The resulting graph is no longer a regular graph, is a

multi-graph.

We represent a multi-graph, as a regular graph with

multiplicities on the edges.

25

26

 If an edge is in the cut, and it has weight w
we add w to the weight of the cut.

 Each vertex in the contracted graph,
corresponds to a connected component in the
original graph.

 The size of the minimum cut in G/xy is at
least as large as the minimum cut in G. Since
any cut in G/xy has a corresponding cut of
the same cardinality in G.

27

The idea of our algorithm is to repeatedly perform

contraction, which is beneficial since it shrinks the

graph.

We contract the graph into a single edge.

Indeed, the resulting cut is not surely the

minimum cut.

28

29

The MinCut algorithm was developed by David Karger during his PhD
thesis in Stanford.

30

 The edge contraction operation can be
implemented in O(n) time.

 MinCut runs in O(n2) time.

 The algorithm always outputs a cut, and the
cut is not smaller than the minimum cut.

31

 Let e1, . . . , en−2 be a sequence of edges in G,
such that none of them is in the minimum
cut, and such that G0 = G/ {e1, . . . , en−2} is a
single multi-edge. Then, this multi-edge
corresponds to the minimum cut in G.

32

 If a graph G has a minimum cut of size k, and
it has n vertices, then |E(G)| ≥ kn/2

 If we pick in random an edge e from a graph
G, then with probability at most 2/n it
belongs to the minimum cut.

 Proof
◦ There are at least nk/2 edges in the graph and

exactly k edges in the minimum cut

33

34

 MinCut outputs the minimum cut if the
events η0, . . . , ηn−3 all happen

35

 Amplification is the process of running an
experiment again and again till the things we
want, happens with good probability.

 Let MinCutRep be the algorithm that runs
MinCut n(n−1) times and return the
minimum cut computed in all those
independent executions.

36

 The probability that MinCutRep fails to return the
minimum cut is < 0.14.

 Proof

37

 One can compute the minimum cut in O(n4) time with

constant probability to get a correct result.

 In O(n4 log n) time the minimum cut is returned with

high probability.

38

 The sorting algorithm always terminates with
the correct solution, but its running time
varies from an expected running time of
O(nlog n) to a worst-case running time of
O(n2).

 The min-cut algorithm sometimes generates
an incorrect solution. The failure probability
can be made arbitrarily small by executing
the algorithm several times with independent
random choices each time.

39

 A Las Vegas algorithm is efficient if on any
input its expected running time is bounded
by a polynomial function of the input size.

 a Monte Carlo algorithm is efficient if on any
input its worst-case running time is bounded
by a polynomial function of the input size.

40

 Ashraf M. Osman, Introduction to
Randomized Algorithms, West Virginia
University.

 Kumar, Analysis of Algorithms, Nov 03, 2003.

 Sariel Har-Peled, Class notes for Randomized
Algorithms, University of Illinois, 2005.

41

42

