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N-QUEENS

 Problem: position n queens on an n × n

chessboard so that no two queens threaten each 

other.

 Let n=4

 There are 4 × 4 × 4 × 4 = 256 candidate solutions.

 We can create the candidate solutions by 

constructing a tree in which the column choices 

for the first queen (the queen in row 1) are stored 

in level-1 nodes in the tree, the column choices 

for the second queen (the queen in row 2) are 

stored in level-2 nodes, and so on.
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 The tree is called a state space tree.

 The entire tree has 256 leaves.

 A path from the root to a leaf is a candidate 

solution .
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BACKTRACKING

 Backtracking is the procedure whereby, after 

determining that a node can lead to nothing but 

dead ends, we go back ("backtrack") to the node's 

parent and proceed with the search on the next 

child. 

 We call a node nonpromising if when visiting 

the node we determine that it cannot possibly 

lead to a solution. 

 Otherwise, we call it promising.

 This is called pruning the state space tree
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THE GENERAL ALGORITHM OF

BACKTRACKING

void checknode (node v) 

{ 

node u; 

if (promising(v)) 

if (there is a solution at v) write the solution;

else 

for (each child u of v) 

checknode(u); 

} 
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 The backtracking algorithm checks 27 nodes 

before finding a solution.

 A depth-first search of the state space tree checks 

155 nodes before finding that same solution.
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ANALYSIS

 Given two instances with the same value of n, 

one algorithm may require that very few nodes be 

checked, whereas the other algorithm requires 

that the entire state space tree be checked.

 If we had an estimate of how efficiently a given 

backtracking algorithm would process a 

particular instance, we could decide whether 

using the algorithm on that instance was 

reasonable.

 We can obtain such an estimate using a Monte 

Carlo algorithm.
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 Monte Carlo algorithms are probabilistic 

algorithms. 

 By a probabilistic algorithm, we mean that 

the next instruction executed is sometimes 

determined at random according to some 

probability distribution. 

 Unless otherwise stated, we assume that 

probability distribution is the uniform 

distribution. 

 By a deterministic algorithm, we mean one in 

which this cannot happen.
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 A Monte Carlo algorithm estimates the 

expected value of a random variable, defined on a 

sample space.

 There is no guarantee that the estimate is close 

to the true expected value.

 We can use a Monte Carlo algorithm to estimate 

the efficiency of a backtracking algorithm for a 

particular instance.

 We estimate the total number of nodes that 

would be checked to find all solutions.

 It is an estimate of the number of nodes in the 

pruned state space tree.
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 The following conditions must be satisfied by the 

algorithm in order for the technique to apply:

1. The same promising function must be used on all 

nodes at the same level in the state space tree.

2. Nodes at the same level in the state space tree must 

have the same number of children.

 The Monte Carlo technique requires that we 

randomly generate a promising child of a node 

according to the uniform distribution.

 We mean that a random process is used to 

generate the promising child.
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MONTE CARLO TECHNIQUE

 Let m0 be the number of promising children of the 
root.

 Randomly generate a promising node at level 1. Let 
m1 be the number of promising children of this node.

 Randomly generate a promising child of the node 
obtained in the previous step. Let m2 be the number 
of promising children of this node.

 . . . 

 Randomly generate a promising child of the node 
obtained in the previous step. Let mi be the number of 
promising children of this node.

 . . . 

 This process continues until no promising children 
are found.
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 mi is an estimate of the average number of 

promising children of nodes at level i.

 ti = total number of children of a node at level i.

 an estimate of the total number of nodes checked 

by the backtracking algorithm to find all 

solutions is given by

 In the algorithm, a variable mprod is used to 

represent the product m0m1 … mi-1 at each level.
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MONTE CARLO ESTIMATE

 Problem: Estimate the efficiency of a 

backtracking algorithm using a Monte Carlo 

algorithm.

 Inputs: an instance of the problem that the 

backtracking algorithm solves.

 Outputs: an estimate of the number of nodes in 

the pruned state space tree produced by the 

algorithm, which is the number of the nodes the 

algorithm will check to find all solutions to the 

instance.
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THE ALGORITHM

int estimate () 

{ node v; 

int m, mprod, t, numnodes; 

v = root of state space tree; 

numnodes = 1; m = 1; mprod = 1; 

while (m != 0)

{ t = number of children of v; 

mprod = mprod * m; 

numnodes = numnodes + mprod * t; 

m = number of promising children of v; 

if (m != 0) 

v = randomly selected promising child of v; 

}

return numnodes; 

} 
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THE MONTE CARLO FOR N-QUEEN

PROBLEM

int estimate_n_queens (int n) 

{ index i, j, col [1 . . n]; int m, mprod, numnodes;

set_of_index prom_children; 

i = 0; numnodes = 1; m = 1; mprod = 1; 

while (m != 0 && i != n)

{ mprod = mprod * m; 

numnodes = numnodes + mprod * n; 

i++; 

m = 0; 

prom_children = ⊘ ;  // Initialize set of promising children 

for (j = 1; j <= n; j++)

{ col[i] = j; 

if (promising (i))

{ m++; 

prom_children = prom_children ∪ {j}; 

}

}

if (m != 0)

{ j = random selection from prom_children; 

col [i] = j;

} 

}return numnodes;

} 
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 When a Monte Carlo algorithm is used, the estimate 
should be run more than once.

 The average of the results should be used as the 
actual estimate.

 Around 20 trials are ordinarily sufficient.

 Although the probability of obtaining a good estimate 
is high when the Monte Carlo algorithm is run many 
times, there is never a guarantee that it is a good 
estimate.

 The estimate produced by any one application of the 
Monte Carlo technique is for one particular instance.

 Given two instances with the same value of n, one 
may require that very few nodes be checked whereas 
the other requires that the entire state space tree be 
checked. 18



KNAPSACK PROBLEM

 We have a set of items, each of which has a 

weight and a profit. 

 A thief plans to carry off stolen items in a 

knapsack, and the knapsack will break if the 

total weight of the items placed in it exceeds 

some positive integer W. 

 The thief's objective is to determine a set of items 

that maximizes the total profit. 
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 We can solve this problem using a state space 

tree. 

 We go to the left from the root to include the first 

item, and we go to the right to exclude it. 

Similarly, we go to the left from a node at level 1 

to include the second item, and we go to the right 

to exclude it, and so on. 

 Each path from the root to a leaf is a candidate 

solution.
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 if weight is the sum of the weights of the items 
that have been included up to some node, the 
node is nonpromising if

 A non obvious non-promising measure

 We first order the items in non-increasing order 
according to the values of pi/wi, where wi and pi are 
the weight and profit, respectively, of the ith item.

 Let profit be the sum of the profits of the items 
included up to the node. 

 Weight is the sum of the weights of those items. 

 We initialize variables bound and totweight to 
profit and weight, respectively. 
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 Next we greedily grab items, adding their profits 

to bound and their weights to totweight, until we 

get to an item that if grabbedwould bring 

totweight above W.

 We grab the fraction of that item allowed by the 

remaining weight, and we add the value of that 

fraction to bound.

 bound is still an upper bound on the profit we 

could achieve by expanding beyond the node.
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 Suppose the node is at level i, and the node at 

level k is the one that would bring the sum of the 

weights above W.
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 If maxprofit is the value of the profit in the best 

solution found so far, then a node at level i is 

nonpromising if
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void knapsack (index i, int profit, int weight) 

{ if (weight <= W&& profit > maxprofit)

{ maxprofit = profit;

numbest = i; 

bestset = include; 

}

if (promising(i))

{ 

include [i + 1] = "yes"; 

knapsack(i + 1, profit + p[i + 1], weight + w[i + 1]);

include [i + 1] = "no"; // Do not include 

knapsack (i + 1, profit, weight); 

}

}

bool promising (index i) 

{ index j, k; int totweight; float bound; 

if (weight >= W)  return false;

else

{ j = i + 1; 

bound = profit; 

totweight = weight; 

while (j <= n && totweight + w[j] < = W)

{ totweight = totweight + w[j]; 

bound = bound + p[j];

j++; 

} k = j;

if (k <=n) bound = bound + (W - totweight) * p[k]/w[k]; 

return bound > maxprofit; 

}

}
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 Monte Carlo technique applies in this problem, it 

can be used to estimate the efficiency of the 

algorithm for a particular instance.

 Worst-case number of entries that is computed by 

the dynamic programming algorithm for the 

Knapsack problem is in O (minimum (2n, nW)). 

 In the worst case, the backtracking algorithm 

checks Θ (2n) nodes. 

 It may appear that the dynamic programming 

algorithm is superior.
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 It is difficult to analyze theoretically the relative 

efficiencies of the two algorithms.

 The algorithms can be compared by running 

them on many sample instances and seeing 

which algorithm usually performs better. 

 Horowitz and Sahni (1978) did this and found 

that the backtracking algorithm is usually more 

efficient than the dynamic programming 

algorithm.

27



THE PROBABILISTIC METHOD
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 The main proponent of the probabilistic method, 

was Paul Erd˝os.

 The basic technique is based on two basic 

observations:

1. If E[X] = μ, then there exists a value x of X, such 

that x ≥ E[X].

2. If the probability of event E is larger than zero, 

then E exists and it is not empty.

 The surprising thing is that despite the 

elementary nature of those two observations, 

they lead to a powerful technique that leads to 

numerous nice and strong results. 29



EXAMPLE

 Theorem: For any undirected graph G(V,E) with 

n vertices and m edges, there is a partition of the 

vertex set V into two sets A and B such that

 Proof: Consider the following experiment: 

randomly assign each vertex to A or B, 

independently and equal probability.
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 For an edge e = uv, the probability that one 

endpoint is in A, and the other in B is ½.

 let Xe be the indicator variable with value 1 if 

this happens.

 Clearly, 

 If E[X] = μ, then there exists a value x of X, such that 

x≥E[X].

 Thus, there must be a partition of V that satisfies 

the theorem.
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EXAMPLE

 Definition: For a vector v = (v1, . . . , vn) ∈IRn, 

 Theorem: Let A be an n × n binary matrix (i.e., 

each entry is either 0 or 1), then there always 
exists a vector b ∈{−1, +1}n such that

32



PROOF

 Let v = (v1, . . . , vn) be a row of A. 

 Choose a random b = (b1, . . . , bn) ∈{−1, +1}n. 

 Let i1, . . . , im be the indices such that vij = 1.

 Clearly, 

 Let Xj = 1 if bij = +1, for j = 1, . . . ,m.

 We have
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 Then 
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CHERNOFF INEQUALITY

 Let X1, . . . ,Xn be n independent random 

variables, such that 

Pr[Xi = 1] = Pr[Xi = −1] =0.5

, for i = 1, . . . , n. 

 Let

 Then, for any  ∆> 0, we have
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 the probability that any entry in Ab exceeds

is smaller than 2/n7. 

 Thus, with probability at least 1 − 2/n7, all the 

entries of Ab have value smaller than
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BINARY PLANAR PARTITIONS
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PROBLEM

 Input: A set S = {s1, s2, ..., sn} of non-intersecting 

line segments in the plane.

 Output: A binary planar partition such that 

every region in the partition contains at most one 

line segment (or a portion of one line segment).
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 A binary planar partition consists of a binary 

tree. Every internal node of the tree has two 

children. 

 Associated with each node v of the tree is a 

region r(v) of the plane. 

 Associated with each internal node v of the tree 

is a line  l(v) that intersects r(v). 

 The region corresponding to the root is the entire 

plane.

 The region r(v) is partitioned by l(v) into two 

regions r1(v) and r2(v), which are the regions 

associated with the two children of v.
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 Any region r of the partition is bounded by the 

partition lines on the path from the root to the 

node corresponding to r in the tree.

 The storage requirement of a particular binary 

planar partition is the number of nodes in the 

associated tree. 

 We want this tree to have as few nodes as 

possible.
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 The best case is the one in which we are able to 

partition the n line segments without generating 

other new line segments (which are created when 

the original line segments are broken). 

 In this case, we will need (n − 1) lines to partition 

the n line segments. 

 Therefore, the total number of nodes in the 

binary planar partition tree (of n leaves and 

(n−1) interior nodes) is (2n−1). 

 However, there is no guarantee that there is 

always a partition of size O(n).
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 We will prove using a randomized algorithm that 

there always exists a binary planar partition of 

size O(n log n).

 For a line segment s, let l(s) denote the line 

obtained by extending s both sides to infinity. 

 For the set S = {s1, s2, ..., sn} of line segments, a 

simple and natural class of partitions is the set of 

autopartitions, which are formed by only using 

lines from the set {l(s1), l(s2), ..., l(sn)} in 

constructing the partition.
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THE RANDOMIZED ALGORITHM

 Input: A set S = {s1, s2, ..., sn} of non-intersecting 

line segments.

 Output: A binary autopartition P of S.

1. Pick a permutation of  of {1, 2, ..., n} uniformly 

at random from n! possible permutations.

2. While a region contains more than one segment, 

cut it with l(si) where i is the first in the 

ordering  such that si cuts that region.
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 Theorem: The expected size of the autopartition

produced by RandAuto is O(n log n).
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ANY QUESTION?
46


