
Preprint submitted to the Supercomputing journal (Springer). You can find the published version at:

https://link.springer.com/article/10.1007/s11227-022-04696-w

CAMID: Architectural Support of Middleware for Multiple-Domain

Ubiquitous Computing and IoT

Hamed Vahdat-Nejad

Pervasive & Cloud Computing Lab, Faculty of Electrical and Computer Engineering, University of

Birjand, Iran

vahdatnejad@birjand.ac.ir

Abstract

Current Internet of Things (IoT) systems concentrate on one domain, such as smart home, university, office, etc.,

while many entities such as humans and mobile phones are mobile entities, roaming between different IoT domains.

Most of the research on context-aware middleware for IoT addresses a specific domain and limited kinds of

applications. Realizing the ultimate intelligence and automation in IoT will need a multiple-domain system. The

architectural design of a multiple-domain context-aware middleware for IoT and Pervasive computing envisages

serious challenges, including extensibility of the environment, need for distribution, resource limitation of mobile

devices, mobility, and need for unique name allocation, which have not been fully addressed by related studies. This

paper proposes the architectural design of a multiple-domain context-aware middleware (CAMID), which uses a

distributed two-layer architecture to handle the above issues. CAMID has been developed in Java in two layers,

including H-CAMID and L-CAMID. Scenario-based Architecture Analysis Method (SAAM) shows that CAMID

satisfies the target quality attributes and outperforms previous multiple-domain solutions. Finally, an experimental

evaluation of CAMID shows acceptable response time in a critical scenario.

Keywords- Context, Context-aware middleware, Architecture, Ubiquitous computing, Internet of Things, Domain

1. Introduction

Pervasive and ubiquitous computing, referred to as the next distributed computing paradigm [1], provides intelligent

services in an anywhere/anytime manner to users. Internet of Things (IoT) is the most well-known concept, which

describes a ubiquitous computing domain. Typical applications in ubiquitous computing and IoT are based on the

information provisioned by sensors, called contextual information. As a result, ubiquitous computing and IoT are

based on the concept of context-awareness [2]. Sensor-based or context-aware applications distinguish the ubiquitous

from traditional distributed computing [3]. The main characteristic of a smart context-aware application, which makes

it different from a classic application, is utilizing context information of the involved entities in the IoT environment

to provide adaptive intelligent services to users [4]. A smart context-aware application should firstly discover the

required context from distributed sources, then perform modeling (for transforming raw context data to meaningful

information) and reasoning (to obtain high-level information from simple low-level contexts), and finally, adapt its

action's behavior to this context. This approach yields sophisticated stand-alone smart applications requiring a long

development time.

The scientific approach to implementing a smart place is to develop a context-aware middleware [5] [6], responsible

for context discovery and registration, aggregation, modeling, reasoning, and distribution to the interested

applications. In fact, the existence of this kind of middleware releases the application developers from context

gathering and processing. Before designing a context-aware middleware, the characteristics and scope of the

environment should be specified. Typical domains available in pervasive computing and IoT are personal, mobile, ad

https://link.springer.com/article/10.1007/s11227-022-04696-w
mailto:vahdatnejad@birjand.ac.ir

hoc, as well as domains physically limited to an IoT-based geographical zone such as smart places (e.g., smart room,

home, office, university, etc.). Each of these domains can support specific kinds of smart applications.

Previously, several frameworks and toolkits have been developed to support context-aware applications for single

domains (e.g. [7] [8] [9] [10] [11]), and also many architectures for context-aware middleware have been proposed

(e.g. [12] [13] [14] [15] [16] [17]). As these solutions are designed for a single domain environment, they can support

the development of very specific and limited kinds of applications. In fact, they are mostly developed for a special

purpose [18] in a particular domain, such as a smart meeting room [12]. The following scenario helps to explain this

limitation:

On a typical day, Kate goes from home to the university at 8 am. At 10 am, she goes to an office for official work and

then to her husband's company to have lunch together.

As evident in this scenario, a typical user roams between different IoT domains regularly and casually: From home to

outdoor (mobile domain), then university, and so on. Therefore, the user's context is generated in different domains,

and middleware for a single and specific domain cannot provide the contexts produced in another domain. For

example, when Kate is at the office, the smart home context-aware system cannot obtain the activity of her or her

health situation or the exact place of her (meeting room, manager's room, or waiting room in the office building).

Activity can only be derived from a group of sensors (motion, noise, light, etc.) installed in the office. Her health

profile may be available in another context-aware system (e.g., a hospital or clinic), and her exact location can only

be obtained from the sensors available in the office (not even the GPS of her mobile phone can provide it). Therefore,

a context-aware middleware designed for just a home has serious limitations in supporting diverse kinds of context-

aware applications. In fact, it can only provide the context information produced in the house and, at best, the context

that can be sensed by the user's mobile phone (such as GPS, Calendar, and contact lists). In summary, an IoT system

that only serves a single domain (such as a smart home) has limited intelligence and capabilities to offer to a user, and

we need a multiple domain IoT system to realize the ultimate intelligence and automation.

To realize the pervasive computing and IoT vision, a context-aware middleware for a multiple domain environment

should be developed to support beyond -domain smart applications. On the other hand, multiple domain environments

introduce new challenges such as extensibility, mobility, the requirement for a uniform namespace, a uniform context

distribution model, etc., that do not exist in single IoT domains (or could be dealt with much easier). Although a

limited number of studies investigate the architectural design of context-aware middleware for a multiple domain

environment [19] [20], they do not address most of the above requirements. Moreover, they are usually restricted to a

centralized architecture and do not consider the constraints imposed by the fact that most of the devices available in

the environment are mobile phones and PDAs with a highly dynamic nature and limited computational and availability

capacities. In fact, none of the studies investigating platform support for context-aware applications provides a

distributed and extendable architecture for a multiple-domain IoT environment that addresses the constraints of

context-aware computing.

This paper proposes the architecture design of the Context-Aware MIDdleware (CAMID), aiming to provide an open

architecture for a multiple-domain IoT and pervasive computing environment. The paper extends our previous paper

[21], in which a middleware has been designed for a smart home domain. Moreover, we extended the distribution

mechanism presented in our previous works [22] [23] and employed it in the proposed architecture. To address the

constraints of mobile devices, CAMID is designed in two layers: The light-weight part (L-CAMID) and the Heavy-

weight part (H-CAMID). L-CAMID is installed on any local server as well as limited-resource computational device

aimed to be part of the environment by providing or consuming context. H-CAMID is installed on global dedicated

servers aiming to hold a full image of the environment and support the L-CAMID layer in providing services. The

structure of both of the layers is distributed. In addition, extensibility and openness are addressed by providing easy-

to-use services for inserting new IoT domains, entities, and contexts. Last but not least, CAMID provides a unique

and uniform naming allocation scheme, which has not been addressed by previous research.

We leverage the Scenario-based Architecture Analysis Method (SAAM) to evaluate CAMID and compare it with

previous multiple domain middleware systems. The evaluation results show that CAMID satisfies the target quality

attributes and outperforms the previous multiple domain architectures.

After this introduction, in the next section, our working definition of context and context-aware middleware as well

as a described list of designing challenges of multiple domain context-aware middlewares are provided. Section 3

reviews the related multiple-domain architectures and discusses their capabilities and deficiencies. In section 4, an

overview of the architecture of the CAMID is presented. Section 5 evaluates the proposed architecture, and section 6

discusses how the proposed architecture addresses the specified challenges. Finally, section 7 concludes the paper and

presents the future direction of this research.

2. Designing challenges

In this section, we provide the definitions and then discuss the challenges that should be dealt with in the design stage

of a multiple-domain context-aware middleware. Among available definitions of context [24] [25] [2], we refer to the

definition proposed by Dey [26]: "context is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object relevant to the interaction between a user and an application, including the user

and application themselves". Moreover, a Context source is an entity that produces contextual data. In IoT and

ubiquitous computing, most contextual sources are sensors.

Context-aware middleware "lies on top of the operating system of mobile phones, PDAs, personal computers, servers,

laptops, and other computational devices available in the environment to discover context sources firstly, and then

perform gathering, aggregation, conflict resolution, modeling, and reasoning, and finally create transparent

distribution mechanisms to distribute pure context information among interested applications" [5]. To design the

architecture of a single-domain context-aware middleware for IoT, many issues should be handled, such as the

dynamic nature of context, the increasing number of context elements, context sources and consumers (e.g.,

applications), mobility of the entities, and the need for distribution, extensibility, and scalability. Dealing with these

concerns in a multiple-domain IoT-based environment is much more challenging. Moreover, new challenges emerge

in these environments that do not exist in single domains. In the remaining part of this section, different challenges

that should be handled during the architectural design of a multiple-domain context-aware middleware are discussed:

• Resource limitation of devices: Most of the devices available in the environment (e.g., in the IoT environment)

are mobile devices with limited storage, computation, communication, and availability capacities. They cannot

play the role of high-performance computers and may be inaccessible or even off. Therefore, any plan for using

them as the middleware infrastructure should consider these limitations.

• Need for distribution: Centralized architectures for middleware can introduce problems. They usually lose

efficiency when applied to a large-scale IoT environment. In addition, they rely on a centralized component that

could create a bottleneck in the system when accidentally the system load increases. Moreover, they introduce a

single point of failure. As a result, the architecture of a multiple-domain context-aware middleware should provide

enough distribution.

• Dynamic nature of the environment: Handling a dynamic environment is a traditional issue in distributed systems.

However, an IoT-based pervasive computing environment is highly dynamic in which devices join and leave

frequently and context changes. Some devices such as mobile phones may be regularly switched off and on.

Similarly, some of the context types, such as a vehicle's location and activity of a person, are changing fast.

• Extensibility and scalability: In a multiple domain IoT-based environment, the number of domains may increase

by joining other homes, offices, organizations, hospitals, and user personal environments, so the middleware

should be extensible. Besides, there are numerous entities and several types of contexts for each entity.

Furthermore, new entities, things, and contexts are introduced over time, and new context sources (e.g., sensors)

and context-aware applications are registered to the system. The middleware should not lose efficiency when the

scale of the environment increases.

• Need for context aggregation: In a multiple-domain IoT environment, the context of a distinct entity is produced

in different domains, and also, there may be more than one source for acquiring a single type of context. For

example, when Kate goes from home to office, her correct activity can be sensed in her current domain (while

the previous domain may still provide the old and wrong value of this context). On the other hand, her location

can be obtained from both her mobile phone GPS and the sensors available in the office. At the same time, her

health records may be available in a clinic domain. These remarks raise the need for virtually aggregating context

and providing the illusion of a centralized context store.

• Mobility: In multiple-domain IoT environments, handling the mobility of entities is a challenging issue. Entities

such as people, mobile phones, laptops, etc., continuously roam (revisiting or entering for the first time) between

different domains such as home, office, university, etc. These entities are usually sources of context data and

sometimes platforms for residing context-aware applications (e.g., mobile phones). In either case, they impose

new tracing challenges to the system (especially in distributed architectures). This issue especially complicates

context discovery, aggregation, and distribution.

• Need for unique name allocation: considering the fact that in IoT, mobile things roam between different domains

and their context is produced in various domains imposes that these entities should be recognized by a unique

name all over the environment. To our best knowledge, none of the multiple-domain studies gives a solution for

this issue. They usually ignore this problem by assuming that all entities already have a unique name.

• Global and transparent context distribution mechanisms: Ultimately, the goal of the IoT-based middleware is to

support the development of intelligent context-aware applications. The benefits and services of the middleware

to the applications are provided and seen through context distribution APIs. There are different approaches for

data distribution in the traditional distributed systems, such as publish-subscription and query languages.

However, adapting them to the multiple-domain IoT-based middleware envisages new challenges such as the

requirement for a general query structure that applies to every domain, a uniform namespace for all the entities

and things available in the environment, and transparency of the distribution mechanisms from the view of

application developers.

3. Related work

While there are many papers related to single-domain context-aware middleware(e.g. [17] [9] [15] [11] [27] [28] [10]

[29] [30] [31] [32]), in this section, we only survey the existing studies related to multiple-domain context-aware

middleware architecture. These research studies have been accomplished under different titles. Still, they propose the

architecture of a part of the context-aware middleware for IoT or pervasive computing.

Gaia [12] is an early middleware architecture designed for a multiple-domain Active Space. The defined active space

consists of homes, offices, and meeting rooms. Gaia involves a central context service component responsible for

context discovery, aggregation, modeling, reasoning, and distribution. It maintains the information about all context

sources in the environment. The context service also lets applications query and register for their required context

types. To support the mobility of the users, a presence service responsible for detecting the place of the people and

devices and a Context File System responsible for helping users locate their required context in the environment have

been designed. The centralized architecture of the context file system makes bottleneck as well as scalability concerns

in context discovery, aggregation, and distribution. The architecture is merely suitable for a limited and fixed

environment.

SOCAM [33] [34] is a service-oriented context-aware middleware for a multiple-domain environment. It gathers and

converts various domains from which contexts are produced into a single semantic space. Then, by providing a central

component for service locating, it supports context discovery, aggregation, and distribution. This scheme envisages

the scalability issue as the size of the environment or the number of domains increases. In fact, SOCAM does not

support enough distribution. Moreover, before including a new domain, its ontology should be formed and inserted

into the hierarchy, which introduces extensibility concerns and makes the architecture suitable for a predefined and

roughly fixed environment.

Context management framework (CMF) [35] is part of the architecture of a multiple-domain context-aware

middleware. The central registry should handle numerous inclusions, updates, and modifications from context sources

and help respond to the queries of applications in finding their suitable context sources. Guaranteeing uninterrupted

access to the registry is difficult in a mobile environment and faces scalability issues when the size of the environment

increases. Moreover, the mobility issue has not been addressed in this study either.

The Awareness project [36] [37] [38] [39] [40] considers four domains, including mobile, home, office, and ad-hoc.

Firstly, a local middleware for each of the domains has been developed, and then by designing bridges between each

two of these domains, the interactions between them are established. A bridge is a functional component that enables

the local context-aware applications to obtain their context requirements from another domain. The main issue is the

large number of bridges required to fully connect many domains, which makes the introduction and insertion

(extensibility) of a new domain very difficult.

Feel@Home [41] (and also OPEN [42] and iPlumber [43] frameworks of the same authors) considers three different

domains- home, office, and outdoor. Each domain has a middleware with a centralized architecture. A centralized

component, referred to as Global Administration Server (GAS), is responsible for interlinking the local middlewares.

The main contribution of this research is handling the mobile entity problem and proposing an inter-domain context

distribution mechanism. Nevertheless, the system architecture is central, and GAS should handle and track all entities

of the environment and answer the inter-domain queries (for context distribution), which are issued by context-aware

applications. Hence, there is always a huge load on GAS, and in the case of failure, the whole system almost fails.

Multi-level Context-aware Framework (mlCAF) [19] provides a multiple domain context modeling and reasoning

strategy by proposing ontologies for a few domains as well as reasoning methods. It does not investigate context

distribution and extensibility of the environment.

AUM-IoT [20] primarily considers healthcare and transportation domains and proposes a semantic agent-based

middleware. The architecture of AUM-IoT consists of four layers: perception, middleware, fog, and cloud. The

perception layer is responsible for context acquisition. Middleware and fog layers deal with context processing, and

the cloud permanently stores context and hosts context-aware services.

Moreover, none of the previous research considers the requirement that all the entities available in the environment

should be recognized by a unique name. This paper proposes the open architecture of Context-Aware MIDdleware

(CAMID) for a multiple-domain IoT-based pervasive computing environment, which aims to support the development

of more powerful applications running on mobile devices. The issues considered during the design stage are

extensibility and scalability, support for distribution, and mobility management. Furthermore, the assignment of a

unique id to the entities is presented, and transparent mechanisms for distributing context are provided in the

architecture.

4. Proposed architecture

In this section, an overview of the architecture of CAMID is presented. CAMID is designed for a multiple-domain

IoT-based ubiquitous computing environment in which IoT supports each domain. Homes, universities, offices,

hospitals, museums, and city transportation systems are typical domains of IoT. IoT services are usually presented to

users via installed screens (e.g., the control panel screen in smart homes) as well as mobile phones. Since mobile

devices have limitations in memory, computation, battery charge, and availability, a two-level infrastructure, which

consists of dedicated global servers and mobile, local servers, or non-dedicated computational devices, is considered

to host the multiple-domain IoT-based middleware. In accordance, CAMID is designed in two layers: Light-weight

(L-CAMID) and Heavy-weight (H-CAMID). This architecture helps to achieve better scalability and extensibility in

a multiple domain IoT environment.

L-CAMID is primarily designed for mobile devices but can be used on any computational device or local server that

does not aim to serve as a dedicated global server. In fact, each device involved in the environment by hosting a

context provider (e.g., things that embed sensors) or a context consumer (e.g., smart context-aware application) should

execute L-CAMID. L-CAMID provides components for helping context providers (things) register and publish their

context and supporting context-aware applications (smart applications) to find their required contextual information.

On the other hand, H-CAMID maintains a global view of the IoT environment, implements the massive part of the

CAMID, and serves as the foundation for supporting the light-weight middleware (L-CAMID) installed on devices

with limited capabilities. It lies on global dedicated servers, which can reside in any domain or cloud. Figure 1 shows

an overview of the architecture of CAMID. In the remaining part of this section, we describe the components and

functionality of the CAMID.

Fig. 1 The overall architecture of the CAMID1

4.1 Context provider

A simple context provider is a light-weight module responsible for gathering a context from a context source and

modeling it to be used by applications. A more complicated context provider is responsible for inferring a high-level

context (such as activity or nearby digital devices) from low-level context types. In the IoT environment, context

providers obtain the contextual values by interacting with sensors. A context provider program uses the services

provided by L-CAMID and can be executed on a smartphone or a thing. It stores the values of the context with a

timestamp specifying the generated time.

4.2 H-CAMID

H-CAMID is the main part of CAMID and is installed on dedicated servers. It stores the name of all IoT domains and

their identities in the Domain table. To ensure reliability, it uses blockchain technology for storing domains and

entities. For each domain, a separate table maintains its registered entities (things), context types available for each

1 Horizontal modules show the layers’ functionalities, while vertical modules show the system functionalities

entity, and the access point of the devices hosting the context provider (for each context). It should be noted that there

may exist more than one device hosting different context providers of a specific context type of a single entity. Figure

2 shows the schema of these tables. By storing the tables, each of these servers tries to maintain a full view of all IoT

domains, entities, and contexts available in the environment. They utilize the master-slave paradigm on TCP/IP

communication to keep their tables updated. If the master server goes offline or envisages a failure, another server is

elected as the master. When a slave updates its database, it propagates the updates to the master. Slave servers

periodically poll the master for probable updates.

H-CAMID provides a registration method, which can be called by L-CAMID's registration method. The aim is to

register the information of a new context provider. The method gets the domain id, entity name, context type, and

access point of the provider, updates the table associated with this domain id, and then disseminates the information

to the master.

IoT Domain-ID Domain-Name

D0001 Smart home

D0002 Smart University

D0003 Urban System

Entity-Name (Thing) Context-Type Context Provider Access-Point

Entity-Name

(Thing)

Context-Type Context Provider Access-Point

Entity-Name (Thing) Context-Type Context Provider Access-Point

Fig. 2 An example of the schema of the tables maintained in H-CAMID

Besides, H-CAMID provides insert-domain and insert-entity services, which could be called by L-CAMID's

corresponding domain and entity insertion methods. These services provide the extensibility for inserting new things

and domains into the IoT environment. On the contrary, it provides a garbage collector service to remove useless

domains, entities, and context providers to prevent the tables from getting too large with redundant data. The garbage

collector service is described in another subsection. In the case of new IoT domain insertion, a unique identifier (in an

incremental way) is assigned to the new domain, and the corresponding record is inserted into the Domain table and

stored in a new block. Afterward, a new table for this domain is created containing its entities (things), contexts, and

access point of the context providers, and the information is sent to the master.

The insert-entity service, which aims to register a new entity or thing, has two parameters: domain-id and entity name.

If the entity is previously available in the mentioned domain, an error message is returned. Otherwise, since a mobile

entity such as a human may have been previously registered in another domain, a list of the entities with the same

name in other domains is returned to the calling method (in L-CAMID). Upon receiving the confirmation, the entity

is inserted into the corresponding domain table. Subsequently, as stated before, this update is forwarded to the master.

Finally, H-CAMID provides a lookup method, which aims to find the access point of context provider(s) of a typical

context. L-CAMID's publish-subscription service can call the method. It gets domain-id, entity name, and context type

as parameters. Then, by searching the table of this domain, it returns the access point of the provider(s) (if available)

or Null (if the information is not available).

4.3 L-CAMID

D0003

D0002

D0001

Each computational device (such as smartphones or things) that hosts a context provider or smart application (context

consumer) should execute the light version of CAMID. L-CAMID provides services for context modeling (utilized

by context provider program), registration, inserting new entity or domain, storage, and context publish-subscription.

L-CAMID uses the SensorML [39] to provide the modeling service. Registration service is utilized by context

providers and is responsible for registering and distributing the information about new context providers. It gets the

information about the domain id, entity name, context type, and access point of the provider and notifies a known

server by calling its registration service available in the H-CAMID layer.

A context provider can utilize the local domain-insertion service, which gets the new IoT domain name, entities, and

their corresponding contexts and access point of the providers. L-CAMID sends this information by calling the

domain-insertion method of H-CAMID from a known server. Subsequently, as stated before, a unique identifier is

assigned to the new IoT domain, and the updates are propagated in the system.

L-CAMID provides the local insert-entity service for things so that a context provider can publish the context of a

new entity or thing. For this, entity name (thing) and IoT domain id (the domain associated with the thing) are specified

as parameters and sent to a known fixed server by calling the related method from H-CAMID. As stated before, the

global server responds with an error (if the thing is already available in the specified IoT domain) or with a list of

similar entities in the other domains. In the latter case, L-CAMID provides the list to the context provider and waits

for the response. Consequently, if the new entity is different from all of the entities available in the list, the insertion

is confirmed and sent to the H-CAMID.

For devices hosting a context provider (such as the things embedding sensors), the storage service maintains the history

of the produced contexts together with their timestamp. For devices hosting smart applications (context consumers),

the storage service maintains the access point of the context providers together with the IoT domain id and entity name

of the contexts, as follows:

Consumed-Context (Context Type, Entity Name, Domain ID, Context-Provider Access-Point).

Storage service also maintains a list of known servers together with their access point address. It can update this list

by sending a request to a server.

Finally, the publish-subscription service is designed to disseminate context among interested smart applications. It

gets IoT domain-id, entity name (thing), and context type as parameters and checks the local storage service to see if

a local context provider module provides the context. If not, it searches the Consumed-Context table to determine

whether the associated context provider(s) access point is available. If the table does not have any record associated

with the specified context, the context lookup method of a known server is called. Afterward, the result returned from

H-CAMID is cached in the Consumed-Context table for probable later requests. Then through the communication

service (MQTT protocol) provided by L-CAMID, it subscribes to the remote context provider and delivers the

published values to the context-aware application.

4.4 Uniform namespace

CAMID assigns a unique id to each IoT domain, as elaborated previously. For referring to things, it categorizes the

entities into two categories: independent and dependent. An entity is called independent if it could be described and

known independently of other entities in its domain. For example, a human is considered an independent entity. On

the other hand, dependent entities use other entities for identification, such as the laptop or mobile phone of a person

or the electronic lock of a room. In the first category entity name is a simple name (e.g., John Cooper), but in the latter

case, it is an entity chain starting with an independent entity (e.g., John Cooper. Laptop, Seminar Room. Electronic

lock). CAMID uses the unique "Domain id.Entity name" structure for referring to an entity. Similarly, a unique triple

structure, "Domain id.Entity name. Context type, " refers to a context.

4.5 Context registration and dissemination

Any computational device available in the environment can host a context provider. The context provider module

makes use of the services offered by the L-CAMID layer installed on the device. It gathers data from a sensor, models

it using the primary modeling service, and registers it by calling the registration service. In addition, a context provider

can introduce a new IoT domain and thing by utilizing domain-insertion and entity-insertion services, respectively,

and provide contextual information about the new entities. A context provider may go offline; anytime a context

provider reinitiates, it calls the registration service.

Similarly, any computational device available in the IoT environment can host a smart application. A smart application

can utilize the publish-subscription service provided by L-CAMID to receive its contextual needs. For this, the

application should specify IoT domain-id, entity name, and context type. Subsequently, the CAMID uniquely finds

the provider and establishes a connection between the L-CAMID of the context provider's device and the application's

device by using the (Message Queue Telemetry Transport) MQTT2 protocol [44]. MQTT is a light-weight M2M3

messaging protocol for IoT applications. It implements the publish-subscription paradigm for data transferring. Since

there may be more than one context provider for a single context, the application can choose among them according

to the timestamp of the generated values.

4.6 Garbage collector

Since any context provider can insert new IoT domains and things, the size of the system tends to grow over time.

Besides, the pervasive computing environment is highly dynamic, so many context providers may operate temporarily.

To address this issue, a garbage collector service is provided, which is periodically executed on the master server and

deletes the out-of-order context providers and useless things and domains. Toward this purpose, if an application

realizes that a context provider is not responsive or finds its context values useless, it can report it to the L-CAMID as

either nonresponsive or useless. L-CAMID deletes the associated record(s) from the Consumed-Context table and

redirects the report to a known server, which in turn propagates it to the master. In the case master receives more than

a threshold number of reports about a context provider, it removes the corresponding record. Moreover, it periodically

checks the tables and removes the records associated with IoT domains and things with no specified context provider.

5. Evaluation

We used Java as a portable programming language to develop the CAMID architecture prototype. Java programs are

translated to byte code, which is runnable on the Java virtual machine. Java virtual machine runs on various platforms;

therefore, Java code can run on any device such as a smartphone, tablet, PC, server, etc. H-CAMID functionalities,

including IoT domain and entity (thing) insertion, context provider registration, and context lookup, are implemented

as Java methods, which are remotely invoked via Java RMI4 from the components of the L-CAMID.

Scenario-based methods are the most important approaches to evaluating software architectures [45]. We use the

Scenario-based Architecture Analysis Method (SAAM) [45], as the main scenario-based method [46] to evaluate the

proposed architecture. We compare the proposed architecture with Feel@home [41] [42] and mlCAF [19] as the

available multi-domain context management architectures. To this end, the quality attributes of reusability,

expandability, transparency, and distribution are investigated. We adopt the scenarios presented in tour-guide [14],

Ubihome [15], Feel@home [41], and Hotel room [9].

Reusability- Reusability is an important quality attribute for the middleware. In the IoT environment, developers

should be able to reuse context providers. CAMID provides the context registration mechanism by which context

providers and things can register their contextual capacities. On the other hand, it provides the context dissemination

mechanism by which context consumers can find and reuse the required context providers. Feel@home does not

investigate and support the reusability of components. In mlCAF, the "High-level Context Notifier" component

provides reusability of contextual information.

Expandability- User, domain, and environment expansion are typical of IoT and pervasive environments. Each user

can add their device to the environment by installing H-CAMID. Therefore, the device can host a context provider or

2 https://mqtt.org/
3 Mobile-to-Mobile
4 Remote Method Invocation

a context-aware application. Besides, users can easily expand the environment by using entity and domain insertion

services. In Feel@home and mlCAF, the domains and entities are predefined and cannot be expanded. AUM-IoT

provides an entity registration service but does not support domain registration.

Transparency- The transparency of the context dissemination mechanism is important from two aspects, including

location and access. Context provider components are developed on various platforms such as Linux, Windows,

Android, IOS, etc., and are located in different places and domains. In CAMID, when a context-aware application

requires a contextual element, it invokes the local context dissemination mechanism, which in turn finds the

corresponding context provider and subscribes to it. Afterward, the application receives the context through the

publish-subscription paradigm. As the context-aware application requests for the context through a uniform API,

regardless of the context provider platform and location, and without the need for knowing the platform and location,

the dissemination mechanism is transparent from both aspects of location and access. Feel@home provides two

mechanisms for context dissemination. Publish-subscription for local context elements and query-based method for

non-local contexts. To this end, the user should be aware of the location of the context element to be able to retrieve

it. As a result, context dissemination is not transparent from both aspects of location and access (As there are two

mechanisms for accessing context). However, the dissemination mechanism is transparent inside a single domain

(which is publish-subscription). In AUM-IoT, retrieving the global context is not transparent. mlCAF uses a

transparent mechanism for context fusion.

Distribution: Centralized architectures are based on a single point of control, while distributed architectures are based

on multiple control points. CAMID is designed in two layers; both of them are totally distributed. L-CAMID uses a

peer-to-peer architecture in which each device runs L-CAMID services. H-CAMID uses a distributed master-slave

architecture. On the contrary, Feel@home uses a central global server, which is responsible for most of the duties of

the system, including tracking entities and context dissemination. Similarly, mlCAF relies on the centralized context

ontology manager.

In the final stage of SAAM, the proposed architecture is compared with previous research. In this regard, table 1

summarizes the comparison results of CAMID with Feel@home and mlCAF regarding the investigated quality

attributes.

Table 1 Result of the evaluation using SAAM

Quality attributes Feel@home [41] mlCAF [19] AUM-IoT [20] CAMID

Reusability ×

Expandability × × Partly

Transparency × ×

Distribution × × Partly

In continue, we perform an experimental simulation to further evaluate CAMID. We adopt a recent scenario from

[20], which is briefly described as follows:

Alice is a BSc degree student currently participating in the IoT class. During the class session, she suddenly faints.

The smart healthcare application on her smartphone detects this event immediately, automatically asks for an

ambulance, and notifies Dr. Cooper, the clinic officer at the university. Dr. Cooper requests her medical history

context of Alice. After receiving it, he analyzes the information and provides initial advice to the ambulance personnel.

Meanwhile, he performs initial actions to prepare the clinic for the treatment.

In this scenario, two context elements are used, including the current health status and medical history of Alice. We

discuss how CAMID handles this situation:

• Current health status: This context is provided by inference from the biotic sensors available on Alice's

smartphone. The local smart healthcare application infers this context and provides it to Dr. Cooper by the

CAMID's publish-subscription dissemination mechanism.

• Medical history: Dr. Cooper uses CAMID's dissemination mechanism to acquire this context. He invokes

CAMID's dissemination mechanism from local L-CAMID installed on his computer. Subsequently, L-CAMID

invokes the context lookup service from the H-CAMID available on a server, and finally delivers Alice's medical

history to Dr. Cooper.

As this is a critical scenario, the time elapsed for obtaining contextual elements is the most important factor. Among

the above-discussed context elements, current health status is obtained locally, so elapsed time is negligible. However,

the medical history context is available on the global layer and obtained through a series of interactions. For this, we

perform an experiment to evaluate the response time for obtaining the medical history context in a real situation.

We established a global H-CAMID server containing several medical histories. We further installed the L-CAMID on

the local laptop and invoked CAMID's context dissemination service for different context volumes. We iterated each

invocation 100 times. Table 2 shows the mean values of context dissemination response time. As concluded, the

response time is mainly affected by Internet capacity. In fact, the intrinsic delay of the CAMID has been acceptable

for this critical scenario.

Table 1 Context dissemination response time

Global context volume (MB) 1 50

Response time (Seconds) 2.6 47.2

6. Discussion

In the following, we discuss how CAMID addresses the challenges previously identified for the architecture design

of multiple-domain context-aware middleware for IoT environments.

Resource limitation of devices: CAMID considers the limitations of the computational devices (things) involved in

the IoT environment using a two-level platform. On the one hand, users get services from the middleware by

interacting with their devices, and on the other hand, the massive part of the middleware is installed on the distributed

servers. In fact, the devices carry a light-weight middleware, which provides its services by calling methods from

dedicated servers through Java RMI.

Need for distribution: CAMID supports a suitable distribution level in both layers. Devices hosting context providers

or applications operate totally in a distributed manner, and servers exploit a distributed master-slave paradigm to keep

themselves up-to-date.

Dynamic nature of the environment: The dynamic nature of the environment is addressed in the architecture by

maintaining the general view of the environment in dedicated servers. Anytime a context provider is initiated, the

corresponding information is propagated in the system. Moreover, the garbage collector component periodically

removes the information about unavailable or useless context providers from the tables. Even the failure of a server

does not cause serious issues because the environment's state is replicated on other servers. Finally, since smart

applications obtain their required contextual information using a publish-subscription scheme from the context

providers (rather than from a static context-store), they are notified of any change in the context.

Extensibility and scalability: CAMID provides easy-to-use services for facilitating extensibility. Any device could

easily be part of the IoT environment by running an instance of the L-CAMID. Therefore, any user can insert a thing

or smart application into the environment by simply developing it on the L-CAMID layer. Inserting new IoT domains

and entities is also done using the corresponding services available in the L-CAMID. Designing CAMID in two totally

distributed layers helps in achieving better scalability.

Need for context aggregation: H-CAMID performs context aggregation and provides a full view of the environment.

Mobility: Since all the inserted entities are primarily assigned to a domain as the "home domain", their mobility does

not impose any problem in recognizing them.

Need for unique name allocation: The hierarchical naming scheme, which starts with the IoT domain id, together with

the unique domain id allocation, ensures all the entities are recognized by a unique name all over the environment.

Global and transparent context distribution mechanisms: Applications can acquire their required context by

submitting IoT domain id, entity name, and context type. Therefore, the context is transparently delivered to them

using the publish-subscription paradigm supported by CAMID.

In summary, CAMID is suitable for open IoT environments in which context providers and context-aware applications

can freely join and leave. Any user can develop a program for gathering a context from a sensor and modeling it or

even inferring a high-level context from simple context types. Subsequently, the context is registered using the

registration service and could be usable by other application developers, so the application developers are released

from re-providing previously available context information.

7. Conclusion

In this paper, the open architecture of context-aware middleware for multiple-domain pervasive computing and IoT

environment has been proposed to facilitate the development of smart applications. By running a light-weight

middleware layer (L-CAMID), any device and thing can host a context provider or context-aware application.

Therefore, extensibility and distribution are the main characteristics of CAMID that make it suitable for an open extra-

large IoT-based environment. To address the limitations of the typical computational devices available in the

environment, the heavy part of the middleware (H-CAMID) has resided on distributed dedicated servers to maintain

a universal view of the environment and support the L-CAMID layer. CAMID also provides a uniform name allocation

scheme to recognize entities uniquely all over the environment. Evaluation results show that CAMID fulfills the design

requirements and acts well in a critical scenario.

In the current design of CAMID, an application developer should be aware of the entity name and domain-id of a

context as it is registered in the system to be able to acquire the context using the publish-subscription method. As one

of the future directions, we are working on designing a more flexible and easy-to-use query mechanism that helps IoT

application developers find their contextual needs without strict information about the entity name and the

corresponding domain-id. Moreover, in the current design of CAMID, some of the servers may encounter a heavy

load due to receiving more requests from the H-CAMID layer. It emerges the requirement of a load balancing scheme

to handle this situation.

Besides, privacy protection is a major concern for users participating in IoT environments. Another research direction

is to design appropriate privacy protection services for CAMID in two stages and insert them into the corresponding

layers. The privacy protection should be conceptually lying in the context registration and dissemination.

Compliance with Ethical Standards

The author has no relevant financial or non-financial interests to disclose.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

https://github.com/The-J-J/CrowdBIG.git, Open source, 2022, developed in Java

References

[1] M. Weiser and J. Brown, "The Coming Age of Calm Technology," in Beyond calculation: the next fifty years,

P. Denning and R. Metcalfe, Eds., New York, Copernicus, 1997, pp. 75 - 85.

https://github.com/The-J-J/CrowdBIG.git

[2] A. Zimmermann, A. Lorenz and R. Oppermann, "An operational definition of context," in Proceedings of the

6th international and interdisciplinary conference on Modeling and using context, 2007.

[3] H. Vahdat-Nejad, S. Ostadi Eilaki and S. Izadpanah, "Towards a Better Understanding of Ubiquitous Cloud

Computing," International Journal of Cloud Applications and Computing, vol. 8, no. 1, pp. 1-20, 2018.

[4] H. Vahdat-Nejad, S. Izadpanah and S. Ostadi-Eilaki, "Context-aware cloud-based systems: design aspects,"

cluster computing, vol. 22, no. 5, pp. 11601-11617, 2019.

[5] H. Vahdat-Nejad, "Context-aware middleware: a review," in Context in computing, Springer, 2014.

[6] B. Bhushan , "Middleware and Security Requirements for Internet of Things," in Micro-Electronics and

Telecommunication Engineering, Singapore, Springer, 2022, pp. 309-321.

[7] A. K. Dey, G. D. Abowd and D. Salber, "A conceptual framework and a toolkit for supporting the rapid

prototyping of context-aware applications," Human-Computer Interaction, vol. 16, no. 2, pp. 97-166, 2001.

[8] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich and D. Chakraborty, "Intelligent Agents Meet the Semantic Web

in Smart Spaces," IEEE Internet computing, vol. 8, no. 6, pp. 69 - 79, 15 November 2004.

[9] J. Euzenat, J. Pierson and F. Ramparany, "Dynamic context management for pervasive applications," The

Knowledge Engineering Review , vol. 23, no. 1, pp. 21-49 , March 2008.

[10] K. Michalakis and et al, "A Context-Aware Middleware for Context Modeling and Reasoning: A Case-Study in

Smart Cultural Spaces," Applied Sciences, vol. 11, no. 13, p. 5770, 2021.

[11] C. Drăgănescu, "Transport Oriented Framework for Context-Aware Services Management," Advances in

Science and Technology, vol. 110, 2021.

[12] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell and K. Nahrstedt, "A Middleware

Infrastructure for Active Spaces," IEEE Pervasive Computing, vol. 1, no. 4, pp. 74-83, October 2002.

[13] T. Gu, H. K. Pung and D. Q. Zhang, "Toward an OSGi-Based Infrastructure for Context-Aware Applications,"

IEEE Pervasive Computing, vol. 3, no. 4, pp. 66-74, October 2004.

[14] A. Cadenas and e. a. , "Context Management in Mobile Environments: a Semantic approach," in Proceedings

of the 1st Workshop on Context, Information, and ontologies, Greece, 2009.

[15] Y. Oh, J. Han and W. Woo, "A context management architecture for large-scale smart environments," IEEE

Communications Magazine, vol. 48, no. 3, pp. 118 - 126, March 2010.

[16] F. Li, S. Sehic and S. Dustdar, "COPAL: An adaptive approach to context provisioning," in proceedings of IEEE

6th International Conference on Wireless and Mobile Computing , Canada, 2010.

[17] R. Baldoni and e. al., "An Embedded Middleware Platform for Pervasive and Immersive Environments for-All,"

in Proceesings of the 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks Workshops, Rome, 2009.

[18] R. Rocha and M. Endler, "Domain-based Context Management for Dynamic and Evolutionary Environments,"

in Proceedings of the 4th on Middleware doctoral symposium, Newport Beach, California, 2007.

[19] M. A. Razzaq and et al., "mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior

Identification," Sensors, vol. 17, no. 10, p. 2433, 2017.

[20] P. Pradeep, S. Krishnamoorthy and A. V. Vasilakos, ""A holistic approach to a context-aware IoT ecosystem

with Adaptive Ubiquitous Middleware," Pervasive and Mobile Computing, vol. 72, p. 101342, 2021.

[21] H. Vahdat-Nejad, K. Zamanifar and N. Nematbakhsh, "Context-Aware Middleware Architecture for Smart

Home Environment," International Journal of Smart home, vol. 7, no. 1, pp. 77-86, 2013.

[22] H. Vahdat-Nejad, K. Zamanifar and N. Nematbakhsh, "A New Approach to Context Distribution in Large-Scale

Environments," in Proceedings of the International Conference on Trends in Information Technology and

Applications, Ajman, UAE, 2010.

[23] H. Vahdat-Nejad, K. Zamanifar and N. Nematbakhsh, "A New Community-Based Context Distribution

Approach for Large-Scale Pervasive Systems," International journal of ad hoc and ubiquitous computing, vol.

14, no. 2, pp. 90-98, 2013.

[24] B. N. Schilit, N. Adams and R. Want, "Context-aware computing applications," in Proceedings of the First

Workshop on Mobile Computing Systems and Applications, California, 1994.

[25] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable Computers," in Proceedings of the 2nd IEEE

International Symposium on Wearable Computers, Pittsburgh, 1998.

[26] A. K. Dey, "Understanding and using context," Personal and Ubiquitous Computing, vol. 5, no. 1, pp. 4-7,

February 2001.

[27] J. Zhang, M. Ma, W. He and P. Wang, "On-demand deployment for IoT applications," Journal of Systems

Architecture, vol. 111, p. 101794, 2020.

[28] E. Symeonaki, K. Arvanitis and D. Piromalis , "A context-aware middleware cloud approach for integrating

precision farming facilities into the IoT toward agriculture 4.0," Applied Sciences, vol. 10, no. 3, p. 813, 2020.

[29] R. Zgheib, E. Conchon and R. Bastide, "Semantic middleware architectures for IoT healthcare applications," in

Enhanced Living Environments, Springer, 2019, pp. 263-294.

[30] M. Mallegowda, P. Sarashetti and A. Kanavalli , "SOA-Based Middleware Framework for IoT Applications,"

in Second International Conference on Sustainable Expert Systems, Nepal, 2022.

[31] V. Rodrigues and et al., "HealthStack: Providing an IoT Middleware for Malleable QoS Service Stacking for

Hospital 4.0 Operating Rooms," IEEE Internet of Things Journal, p. In press, 2022.

[32] L. Shen, "Multi-Software Architecture and Ubiquitous Multi-Center Internet of Things based Intelligent Library

System," in 6th International Conference on Trends in Electronics and Informatics, India, 2022.

[33] T. Gu, H. K. Pung and D. Q. Zhang, "A Middleware for Building Context-Aware Mobile Services," in

Proceedings of 59th IEEE Vehicular Technology Conference, Milan, 2004.

[34] T. Gu, H. K. Pung and D. Q. Zhang, "A service-oriented middleware for building context-aware services,"

Journal of Network and Computer Applications, vol. 28, no. 1, p. 1–18, January 2005.

[35] H. v. Kranenburg, M. S. Bargh, S. Iaco and A. Peddemors, "A Context Management Framework for Supporting

Context-Aware Distributed Applications," IEEE Communications Magazine, vol. 44, no. 8, pp. 67 - 74, 21

August 2006.

[36] M. J. Van Sinderen, A. T. Van Halteren, M. Wegdam, H. B. Meeuwissen and E. H. Eertink, "Supporting

Context-aware Mobile Applications: an Infrastructure Approach," IEEE Communications Magazine, vol. 44,

no. 9, pp. 96 - 104, September 2006.

[37] F. Liu and G. Heijenk, "Context Discovery Using Attenuated Bloom Filters in Ad-hoc Networks," Journal of

Internet Engineering, vol. 1, no. 1, pp. 49-58, 2007.

[38] P. Pawar, A. Van Halteren and K. Sheikh, "Enabling Context-Aware Computing for the Nomadic Mobile User:

A Service Oriented and Quality Driven Approach," in Proceedings of IEEE Wireless Communications and

Networking Conference, Kowloon , 2007.

[39] C. Hesselman and e. al., "Bridging Context Management Systems for Different Types of Pervasive Computing

Environments," in Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE,

Operating Systems, and Applications, Brussels, 2008.

[40] P. Pawar and e. al., "Bridging Context Management Systems in the Ad Hoc and Mobile Environments," in IEEE

Symposium on Computers and Communications, Sousse, Tunisia, 2009.

[41] B. Guo, L. Sun and D. Zhang, "The Architecture Design of a Cross-Domain Context Management System," in

8th IEEE International Conference on Pervasive Computing and Communications Workshop, Mannheim, 2010.

[42] B. Guo, D. Zhang and M. Imai, "Toward a cooperative programming framework for context-aware

applications," Personal and Ubiquitous Computing, vol. 15, no. 3, pp. 221-233, March 2011.

[43] B. Guo, D. Zhang and M. Imai, "Enabling user-oriented management for ubiquitous computing: The meta-

design approach," Computer Networks, vol. 54, no. 16, p. 2840–2855, November 2010.

[44] B. M. Patel , C. M. Bhatt, H. Vahdat-Nejad and H. B. Patel, "Smart city based on MQTT using wireless sensors,"

in Protocols and Applications for the Industrial Internet of Things, IGI, 2018, pp. 240-263.

[45] R. Kazman, G. D. Abowd, L. Bass and P. Clements, "Scenario-based analysis of software architecture," The

IEEE software journal, vol. 13, no. 6, pp. 47- 55, 1996.

[46] L. Dobrica and E. Niemela, "A survey on software architecture analysis methods," IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 638- 653, 2002.

[47] P. Hu, J. Indulska and R. Robinson, "An autonomic context management system for pervasive computing," in

Annual IEEE International Conference on Pervasive Computing and Communications , Hong Kong, 2008.

[48] A. Corradi, M. Fanelli and L. Foschini, "Implementing a Scalable Context-Aware Middleware," in Proceedings

of IEEE Symposium on Computers and Communications, Sousse, 2009.

[49] K. Henricksen, J. Indulska, M. Ted and S. Balasubramaniam, "Middleware for Distributed Context-Aware

Systems," in International Symposium on Distributed Objects and Applications, Cyprus, 2005.

[50] K. Michalakis, Y. Christodoulou, G. Caridakis, Y. Voutos and P. Mylonas, "A Context-Aware Middleware for

Context Modeling and Reasoning: A Case-Study in Smart Cultural Spaces," Applied Sciences, vol. 11, no. 13,

p. 5770, 2021.

