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Regular Expressions: ousld L &lylus

* Definition: An Algebraic notation for characterizing a set of
strings

* They are useful for searching a pattern in text
* They are case sensitive
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Regular Expressions: Disjunctions (b»couws)

e Letters inside square brackets means any of them []

[WiW] oodchuck Woodchuck, woodchuck
[1234567890] Any digit

* Ranges [A-7]

Z ] An upper case letter Drenched Blossoms
[a-2z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole



Dan Jurafsky

Regular Expressions: Negation in Disjunction

* Negations *

e Carat means negation only when first in []

["A-7] Not an upper case letter
[~Ss] Neither ‘S’ nor ‘s’

[re”] Neither e nor A
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Regular Expressions: More Disjunction

 Woodchucks is another name for groundhog!
* The pipe | for disjunction

groundhog|woodchuck

yours |mine yours
mine
alblc = [abc]

[gG] roundhog| [Ww] oodchuck
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colou?r Optional color colour
previous char

oco*h! 0 or more of oh! ooh! oooh! ooooh!
previous char

o+h! 1 or more of oh! ooh! oooh! ooooh!
previous char

Stephen C Kleene
baa+ baa baaa baaaa baaaaa

beg.n Any character begin begun begun beg3n Kleene *, Kleene +
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Summary

e Regular expressions play a surprisingly large role

* Sophisticated sequences of regular expressions are often the first model
for any text processing text

* For many hard tasks, we use machine learning classifiers

» But regular expressions are used as features in the classifiers
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Basic Text
Processing

Word tokenization



Dan Jurafsky

Text Normalization

Every NLP task needs to do text
normalization:

1. Segmenting/tokenizing words
2. Normalizing word formats
3. Segmenting sentences
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How many words?

They picnicked by the pool, then lay back on the grass and looked at the
stars.

* Type: an element of the vocabulary. Number of distinct words

* Token: an instance of that type in running text. Total number of
words (Repetitions count)
* How many?
* 16 tokens
* 14 types
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How many words?

N = number of tokens 1
Church and Gale (1990): |V | > O(N”)
V = vocabulary = set of types

| V| is the size of the vocabulary

e ens SN L ypes = IV

Switchboard phone 2.4 million 20 thousand
conversations

Shakespeare 884,000 31 thousand
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Normalization

* Word normalization is the task of putting words/tokens in a
standard format,

* Choosing a single normal form for words with multiple forms
like USA and US or uh-huh and uhhuh.
 We want to match U.5.A. and USA
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Case folding

» Case folding is a kind of normalization: Mapping
everything to lower Case

» Suitable for Applications like Information retrieval:
Since users tend to use lower case

* For sentiment analysis, Machine Translation,
Information extraction

e Case is helpful (US (Country) versus us is important)
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Lemmatization U iy,

* Lemmatization is the task of determining that two words have
the same root, despite their surface differences.

* Reduce variations to base form

e am, are, is — be

e car, cars, car's, cars' — car

e the boy's cars are different colors — the boy car be different color

* Lemmatization: have to find correct dictionary headword (s5/g )
form
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Morphology

 The most sophisticated methods for lemmatization involve
complete morphological ( .l 5w ,) parsing of the word.

 Morphology is the study of the way words are built up from
smaller units called morphemes (73l9).

* Morphemes: The small meaningful units that make up words

e Stems (43Lw) : the central morpheme, supplying the main
meaning. (e.g. cat in cats)

o Affixes (aowows) : Bits and pieces that is added to stems. (e.g. s
in cats)
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e Stemmingis a simple and rudimentary algorithm for
lemmatization.
e Stemming cuts affixes.

* language dependent
* e.g., automate(s), automatic, automation all reduced to automat.

-
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Porter’s algorithm
The most common English stemmer

Step 1a Step 2 (for long stems)
ssés — Ss caresses —» caress ational— ate relational— relate
l1es — 1 ponies  — poni izer— ize digitizer — digitize
Ss — Ss caress — caress ator—> ate operator —> operate
S —> 0 cats — cat

Step 1b Step 3 (for longer stems)
(*v*)ing —» ¢ walking — walk al - @ revival — reviv

sing — sing able — ¢ adjustable — adjust

(*v*)ed — ¢ plastered — plaster ;.o —> @ activate — activ
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Viewing morphology in a corpus
Why only strip —ing if there is a vowel?

(*v*)ing — @ walking — walk

sing —> s1ng

19
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Dealing with complex morphology is
sometimes necessary

 Some languages requires complex morpheme segmentation
e Turkish
e Uygarlastiramadiklarimizdanmissinizcasina
e (behaving) as if you are among those whom we could not civilize’
e Uygar ‘civilized’ + las "become’
+ tir ‘cause’ + ama ‘not able’
+ dik “past’ + lar ‘plural’
+imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’
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Basic Text
Processing

Sentence Segmentation
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I, ? are relatively unambiguous
Period “.” is quite ambiguous:
* Sentence boundary
» Abbreviations like Mr. or Dr.
* Numbers like .02% or 4.3

Sentence tokenization methods work by first deciding (based on rules or machine learning)
whether a period is part of the word or is a sentence-boundary marker.

An abbreviation dictionary can help determine whether the period is part of a commonly used
abbreviation;

oy

Build a binary classifier that Looks at a “.” and decides:
* Decides EndOfSentence/NotEndOfSentence
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Determining if a word is end-of-sentence:
a Decision Tree

E-O-S

Not E-O-S

YF NO
Not E-O-S E-O-S
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More sophisticated decision tree features

* Case of word with “.”: Upper, Lower, Cap, Number

“u n,

* Case of word after “.”: Upper, Lower, Cap, Number

* Numeric features
* Length of word with “.”
* Probability(word with “.” occurs at end-of-s)

o n

* Probability(word after “.” occurs at beginning-of-s)
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Implementing Decision Trees

* A decision tree is just an if-then-else statement
* The interesting research is choosing the features

* Setting up the structure is often too hard to do by hand
* Hand-building only possible for very simple features, domains
* For numeric features, it’s too hard to pick each threshold

 Instead, structure usually learned by machine learning from a training
corpus
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Decision Trees and other classifiers

* We can think of the questions in a decision tree

* As features that could be exploited by any kind of
classifier
* Logistic regression
« SVM
* Neural Nets
* etc.
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